Restrictions of characters in p-solvable groups
نویسندگان
چکیده
Let G be a p-solvable group, P≤G p-subgroup and χ∈Irr(G) such that χ(1)p≥|G:P|p. We prove the restriction χP is sum of characters induced from subgroups Q≤P χ(1)p=|G:Q|p. This generalizes previous results by Giannelli–Navarro Giannelli–Sambale on number linear constituents χP. Although this statement does not hold for arbitrary groups, we conjecture weaker version which can seen as an extension Brauer–Nesbitt's theorem p-defect zero. It also extends Wilde.
منابع مشابه
Some connections between powers of conjugacy classes and degrees of irreducible characters in solvable groups
Let $G$ be a finite group. We say that the derived covering number of $G$ is finite if and only if there exists a positive integer $n$ such that $C^n=G'$ for all non-central conjugacy classes $C$ of $G$. In this paper we characterize solvable groups $G$ in which the derived covering number is finite.
متن کاملIrreducible characters of Sylow $p$-subgroups of the Steinberg triality groups ${}^3D_4(p^{3m})$
Here we construct and count all ordinary irreducible characters of Sylow $p$-subgroups of the Steinberg triality groups ${}^3D_4(p^{3m})$.
متن کاملENDOTRIVIAL MODULES FOR p-SOLVABLE GROUPS
We determine the torsion subgroup of the group of endotrivial modules for a finite solvable group in characteristic p. We also prove that our result would hold for p-solvable groups, provided a conjecture can be proved about the case of p-nilpotent groups.
متن کاملSUPERCUSPIDAL CHARACTERS OF REDUCTIVE p-ADIC GROUPS
We compute the characters of many supercuspidal representations of reductive p-adic groups. Specifically, we deal with representations that arise via Yu’s construction from data satisfying a certain compactness condition. Each character is expressed in terms of a depth-zero character of a smaller group, the (linear) characters appearing in Yu’s construction, Fourier transforms of orbital integr...
متن کاملSemisimple characters for p-adic classical groups
Let G be a unitary, symplectic or orthogonal group over a non-archimedean local field of residual characteristic different from 2, considered as the fixed point subgroup in a general linear group G̃ of an involution. Following [7] and [13], we generalize the notion of a semisimple character for G̃ and for G. In particular, following the formalism of [4], we show that these semisimple characters h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2021
ISSN: ['1090-266X', '0021-8693']
DOI: https://doi.org/10.1016/j.jalgebra.2021.07.034